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1. はじめに
テイラー展開やフーリエ級数展開は定義を暗記する

だけではつまらない. 本稿ではそれらが何のためにど
ういう操作をしているのかを解説する. なお工学で扱
う大概の関数は素性がよいため, ここでは数学的厳密性
よりも直観的な解釈を優先する.

2. テイラー展開
関数 f(x) が多項式

f(x) =
∞∑

n=0

anxn

= a0 + a1x + a2x
2 + · · · (1)

で表すことができると, 以下の意味でうれしい.

• 直接計算できない関数 (三角関数,ベッセル関数 [1]
など) の値を求めることができる. 関数電卓など
はこれにもとづいて算出した値を返す.

• x が十分小さい (x ¿ 1) とき f(x) ' a0 + a1x と
近似できる (線形近似). これにもとづいて単振動
や波動方程式が導出されることが多い.

係数 an (n = 0, 1, 2, · · ·) は, 定数の微分が 0 になる
ことと, x = 0 のとき x のべき乗が全て 0 になること
を利用して求める. f(x) が無限回微分可能な実関数,
または正則な複素関数であると仮定する. 式 (1) を x

で n 回微分すると, a0 から an−1 までは x の個数が足
りず 0 になる.

f (n)(x) = n! an +
(n + 1)!

1!
an+1 x

+
(n + 2)!

2!
an+2 x2 + · · · (2)

n! などは微分するたびに出てくる x の右肩の数の積で
ある. ここで x = 0 とすると定数項 n! an のみが残り,
次式が得られる.

an =
f (n)(0)

n!
(3)

これが原点まわりのテイラー展開 (マクローリン展開)
の係数である. 同様にして, 一般の x = p まわりのテ
イラー展開も導くことができる.

f(x) =
∞∑

n=0

an(x− p)n (4)

an =
f (n)(p)

n!
(5)

3. ローラン展開
正則でない複素関数 f(x)も一般の x = pのまわりで

f(x) =
∞∑

n=−∞
an(x− p)n

= · · ·+ a−1

x− p
+ a0 + a1 (x− p) + · · · (6)

のように級数展開することができる. これはテイラー
展開を負のべき乗まで拡張したものと考えられ, 以下の
意味でうれしい.

• テイラー展開不可能な関数の挙動を解析できる.
• 留数と関係があり, 複素積分の計算に役立つ.

係数 an (n = · · · ,−2,−1, 0, 1, 2, · · ·) は, −1 乗以外
の (x− p) のべき乗を p のまわりで周回積分すると 0
になることを利用して求める. f(x) が一価関数である
と仮定する. 式 (6) に (x− p)−(n+1) をかけて周回積分
すると an の項のみが残る.

∮

C

f(x)
(x− p)n+1

dx =
∮

C

an

x− p
dx (7)

ここで C は p を含む閉曲線とする. 右辺の値は 2πi an

なので, 次式が得られる.

an =
1

2πi

∮

C

f(x)
(x− p)n+1

dx (8)

これが x = p まわりのローラン展開の係数である. し
かし定義通り積分を実行して展開することは稀で,

1
1− x

=
∞∑

n=0

xn when |x| < 1 (9)

(等比級数の無限和) などよく知られたテイラー展開を
利用して式変形により直接展開することが多い.

4. フーリエ級数展開
周期 2π/k をもつ実関数 f(x) は, その整数倍の周波

数の正弦波により

f(x) =
∞∑

n=−∞
anejnkx

= · · ·+ a−1 e−jkx + a0 + a1 ejkx + · · · (10)

と表すことができる. これは以下の意味でうれしい.

• ノイズ成分 (高周波や特定の周波数)を分離できる.
• 楽器などの倍音構造 (音色) を解析できる.
• 線形な微分方程式において, 代表的な解 ejkx を仮
定して解けば任意の周期波形について解いたこと
になる.



係数 an (n = · · · ,−2,−1, 0, 1, 2, · · ·) は, 異なる周波
数の正弦波同士が直交していることを利用して求める.
式 (10) と ejnkx の内積をとる (e−jnkx をかけて一周期
で積分する) と an の項のみが残る.

∫ π
k

−π
k

f(x) e−jnkxdx =
∫ π

k

−π
k

andx (11)

右辺の値は 2πan/k なので, 次式が得られる.

an =
k

2π

∫ π
k

−π
k

f(x) e−jnkxdx (12)

これがフーリエ級数展開の係数である. k → 0 の極限
をとるとフーリエ変換が得られ, 周期が無限に長い (つ
まり非周期的な) 関数を扱うことができる.

5. おわりに
本稿では展開できることを前提として解説した. そ

れぞれの級数の収束性や, テイラー展開に関係する剰余
項・収束半径, ローラン展開に関係する留数, などにつ
いては教科書, あるいは文献 [2, 3, 4, 5] を参照のこと.
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